반응형 가스터빈(Gas Turbine) 성능 이론67 5.10.2 터빈 설계의 선형 스케일링 맵에 미치는 영향 2023.06.26 - [가스터빈(Gas Turbine) 성능 이론] - 5.9.4 기본 사이징 매개변수 안내 입구 마하수/5.10 축류형 터빈 - 탈 설계 성능 5.10.2 터빈 설계의 선형 스케일링 맵에 미치는 영향 5.1.2절 및 5.2.2절은 압축기 하드웨어를 선형적으로 스케일링하는 압축기 맵에 미치는 영향에 관해 설명합니다. 동일한 규칙이 터빈 맵에도 적용됩니다. 즉, 그림 5.30이 4장에 제시된 스케일링 매개변수의 관점에서 플롯 된 경우, 설계가 선형 스케일링 될 때 일차적으로 변경되지 않습니다. 스케일링 '축소'로 인해 터빈이 작은 경우, 팁 간극 또는 트레일링 에지 두께와 같은 모든 치수를 정확하게 스케일링하는 것이 불가능하여 속도에서 용량 압력비 및 효율이 추가로 손실될 수 있습니다. .. 2023. 7. 3. 5.9.4 기본 사이징 매개변수 안내 입구 마하수/5.10 축류형 터빈 - 탈 설계 성능 2023.06.22 - [가스터빈(Gas Turbine) 성능 이론] - 5.9 축류 터빈 – 설계점 성능 및 기본 크기 조정 가이드 5.9.4 기본 사이징 매개변수 안내 입구 마하수 업스트림 덕트의 압력 손실을 최소화하고 가스가 NGV 표면을 따라 모든 지점에서 가속되도록 하려면 첫 번째 단에 대한 평균 입구 마하수가 이상적으로 0.2 미만이어야 합니다. 후속 단에서는 더 높을 수 있습니다. 블레이드 입구 허브의 상대 마하수 블레이드 유로 전체에서 블레이드에 상대적인 가속도가 있도록 하려면 해당 값이 0.7 미만이어야 합니다. 확산이 발생하면 분리 및 압력 손실 증가로 이어질 수 있습니다. NGV 출구 각도는 65도에서 73도 사이입니다. 회전 속도 림 속도, 팁 속도 및 (AN)^2를 기계적 무결성에.. 2023. 6. 26. 5.9 축류 터빈 – 설계점 성능 및 기본 크기 조정 가이드 2023.06.21 - [가스터빈(Gas Turbine) 성능 이론] - 5.8 연소기 – 탈 설계 성능 5.9 축류 터빈 – 설계점 성능 및 기본 크기 조정 가이드 터빈은 기체 흐름에서 동력을 추출하여 엔진 압축기 또는 동력 터빈의 경우, 프로펠러 또는 발전기와 같은 부하를 구동합니다. 5.11.6 및 5.11.7절에서는 축류 형 또는 방사형 터빈이 개별 응용 분야에 가장 적합한 이유를 설명합니다. 5.15절에서는 터빈 블레이드 및 디스크 냉각에 관해 설명합니다. 5.9.1 구성 및 속도 삼각형 그림 5.28은 1단 축류 터빈의 구성을 나타냅니다. 스테이지는 한 줄의 노즐 가이드 베인(NGV)과 디스크에 장착된 한 줄의 로터 블레이드로 구성됩니다. 슈라우드 블레이드는 간극 손실을 줄이고 종종 연동되어 .. 2023. 6. 22. 5.8 연소기 – 탈 설계 성능 2023.06.20 - [가스터빈(Gas Turbine) 성능 이론] - 5.7.6 기본 크기 매개변수 가이드/5.7.8 산업용 엔진용 건식 저배출 연소 시스템 5.8 연소기 – 탈 설계 성능 5.8.1 효율 및 온도 상승 차트 5.5는 모델이 알려진 입구 조건 및 연소기 체적에서 평가된 부하를 사용하여 곡선을 따라 보간할 수 있도록 선택한 곡선을 디지털화하여 엔진 정지 설계 성능 모델의 효율을 결정하는 데 사용할 수 있습니다. 실제로 연료 공기 비율은 차트 5.5의 세 번째 차원이지만 그 효과는 작고 연소기 설계에 따라 다릅니다. 일반 차트는 준비할 수 없으며 초기 모델에서는 무시할 수 있습니다. 다시 3장에서 설명한 연소기 온도 관계는 모든 탈 설계 조건에 적용할 수 있습니다. 5.8.2 압력 손실 .. 2023. 6. 21. 이전 1 2 3 4 5 6 7 8 ··· 17 다음 반응형